
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{wettinger, andrikopoulos, leymann}@iaas.uni-stuttgart.de

Automated Capturing and Systematic Usage
of DevOps Knowledge for Cloud Applications

Johannes Wettinger, Vasilios Andrikopoulos, Frank Leymann

© 2015 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Wettinger2015,	
	 	 author	 	 	 	 =	 {Johannes	 Wettinger	 and	 Vasilios	 Andrikopoulos	 and	 Frank	 Leymann},	
	 	 title	 	 	 	 	 =	 {Automated	 Capturing	 and	 Systematic	 Usage	 of	 DevOps	 Knowledge	

for	 Cloud	 Applications},	
	 	 booktitle	 =	 {Proceedings	 of	 the	 IEEE	 International	 Conference	 on	 Cloud	

Engineering	 (IC2E)},	
	 	 year	 	 	 	 	 	 =	 {2015},	
	 	 pages	 	 	 	 	 =	 {60-‐-‐65},	
	 	 publisher	 =	 {IEEE	 Computer	 Society}	
}	

:

Institute of Architecture of Application Systems

Automated Capturing and Systematic Usage of
DevOps Knowledge for Cloud Applications

Johannes Wettinger, Vasilios Andrikopoulos, Frank Leymann

Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Stuttgart, Germany

{wettinger, andrikopoulos, leymann}@iaas.uni-stuttgart.de

Abstract—DevOps is an emerging paradigm to actively foster
the collaboration between system developers and operations in or-
der to enable efficient end-to-end automation of software deploy-
ment and management processes. DevOps is typically combined
with Cloud computing, which enables rapid, on-demand provi-
sioning of underlying resources such as virtual servers, storage,
or database instances using APIs in a self-service manner. Today,
an ever-growing amount of DevOps tools, reusable artifacts such
as scripts, and Cloud services are available to implement DevOps
automation. Thus, informed decision making on the appropriate
approach(es) for the needs of an application is hard. In this
work we present a collaborative and holistic approach to capture
DevOps knowledge in a knowledgebase. Beside the ability to
capture expert knowledge and utilize crowdsourcing approaches,
we implemented a crawling framework to automatically discover
and capture DevOps knowledge. Moreover, we show how this
knowledge is utilized to deploy and operate Cloud applications.

Keywords—DevOps, Crawling, Knowledge Management, Knowl-
edge Model, Cloud Computing

I. INTRODUCTION AND PROBLEM STATEMENT

Today, it is vital for many software vendors and providers,
especially in the field of Web applications and software-as-
a-service (SaaS) applications to frequently and continuously
roll out updates of an application. This is because users and
customers expect new features and bug fixes to be available
as quickly as possible. Consequently, a critical competitive
advantage can be achieved by meeting these expectations and
implementing mechanisms to drastically shorten application
release cycles. Thorough and holistic automation is required to
enable frequent and continuous software delivery [1]. DevOps
is an emerging paradigm [2]–[4] to eliminate the split and
barrier between developers and operations personnel:

“DevOps is a mix of patterns intended to improve collabo-
ration between development and operations. DevOps addresses
shared goals and incentives as well as shared processes and
tools. Because of the natural conflicts among different groups,
shared goals and incentives may not always be achievable.
However, they should at least be aligned with one another.” [5]

Tight collaboration between developers and operations
(DevOps) as well as holistic end-to-end automation (e.g., in the
form of a fully automated deployment pipeline [1]) is required
to enable continuous delivery. A huge and confusing variety
of tools, reusable artifacts, and services are available today.
Prominent examples are the Chef configuration management

framework [6], the Jenkins1 continuous integration server,
and Docker2 as an efficient container virtualization approach.
The open-source communities affiliated with these tools are
publicly sharing reusable artifacts to package, deploy, and
operate middleware and application components. For instance,
Chef’s Ruby-based domain-specific language [7] can be used
to create and maintain cookbooks, which are basically scripts
to automate the deployment and wiring of different components
of an application stack. Alternatively or additionally, Docker
container images can be built to package certain components in
an isolated and reusable manner. There are further DevOps tools
and corresponding artifacts such as Juju3 with Juju charms4

and Puppet [8], [9] with Puppet modules5 that can be used
alternatively or complementary.

DevOps approaches are typically combined with Cloud
computing [10] to enable on-demand provisioning of resources
such as virtual servers and storage in a self-service manner.
Different interfaces are offered by Cloud providers (e.g., Ama-
zon6) such as graphical user interfaces, command line interfaces,
and APIs to provision and manage these resources. Especially
APIs and command line interfaces are an efficient means to
integrate DevOps automation approaches with Cloud resource
management programmatically. This can be done for public,
private, and hybrid Cloud scenarios. As an example, Amazon’s
APIs can be utilized to provision virtual servers on which Chef
cookbooks or Juju charms are executed to deploy a certain
application stack. Moreover, some Cloud providers offer higher-
level services such as middleware services (e.g., runtime-as-a-
service, database-as-a-service, etc.) and operations automation
services, abstracting from the underlying infrastructure. These
services can be used alternatively or complementary to the
lower-level infrastructure services.

Because DevOps automation approaches and Cloud services
appear, change, and disappear rapidly, it is hard to choose
the most appropriate solutions and combinations thereof to
implement holistic DevOps automation for a specific application.
Informed decision making is hard because of the huge variety
of options. DevOps knowledge is practically available at large
scale, but it is not systematically captured and managed.

1Jenkins: http://jenkins-ci.org
2Docker: http://www.docker.com
3Juju: https://juju.ubuntu.com
4Juju charms: https://jujucharms.com
5Puppet modules: https://forge.puppetlabs.com
6Amazon EC2 documentation: http://aws.amazon.com/documentation/ec2

However, providing solutions for this DevOps knowledge
management problem is of the utmost importance to end up
with an efficient DevOps automation and collaboration process
to enable continuous delivery. The major contributions of this
paper can therefore be summarized by:

• A holistic approach toward systematic DevOps knowl-
edge management.

• The design and implementation of a DevOps knowl-
edgebase and the tooling required to populate it.

• An automated crawling approach to discover and
capture DevOps knowledge.

The remainder of this paper is structured as follows:
Section II outlines a motivating scenario that is used as running
example for this paper. We present a holistic methodology to
enable DevOps knowledge management in Section III. Because
the DevOps knowledgebase is the core of our methodology,
Section IV discusses DevOps knowledge classification and a
prototype implementation in detail. Section V discusses the
utilization of DevOps knowledge based on specific DevOps
requirements. Finally, Section VI concludes the paper.

II. MOTIVATION

As a motivating scenario and running example for our work
we consider the deployment and operations requirements of
WordPress7, which is a popular open-source blog application.
WordPress requires: (i) a MySQL database server version 5.0 or
greater, (ii) a PHP runtime version 5.2.4 or greater, and (iii) a
Web server such as Apache HTTP Server8 or Nginx9. In order
to enable continuous delivery of new versions of WordPress
(bug fixes, new features, etc.), these requirements have to
be considered when implementing an end-to-end DevOps
automation and collaboration process.

Figure 1 presents an overview of the middleware com-
ponents required to run WordPress. Moreover, different de-
ployment options are outlined to make these middleware
components available to the application, satisfying WordPress’
requirements. As an example, an existing Amazon Machine
Image (AMI)10 could be used to run a complete LAMP11

stack on a single virtual machine (VM) to operate WordPress.
However, in this case resources are limited to a single VM,
and as such scalability options are limited. Thus, open-source
deployment scripts such as the MySQL cookbook12 and the
PHP application cookbook13 (Chef) could be used to split the
middleware across two VMs, running in a Linux or Windows
VM. In case the scalability of the MySQL database server needs
to be further improved, the MySQL charm14 may be used as a
set of operations scripts to run a MySQL database cluster in a
master/slave setup: data that are written to the master instance
are consistently replicated to the slave instances, so reading
requests can be load-balanced between slave instances. However,

7WordPress requirements: http://wordpress.org/about/requirements
8Apache HTTP Server: https://httpd.apache.org
9Nginx: http://nginx.org
10LAMP stack AMI: http://goo.gl/eVTzAY
11LAMP = Linux + Apache + MySQL + PHP
12MySQL cookbook: http://supermarket.chef.io/cookbooks/mysql
13PHP app. cookbook: http://supermarket.chef.io/cookbooks/application php
14MySQL charm: https://jujucharms.com/precise/mysql-46

Web Server

MySQL
Database

Server

PHP Runtime

WordPress Application Could be deployed and
hosted using Google
Cloud SQL, Amazon
RDS, MySQL Chef
Cookbook, MySQL

Dockerfile, …

Could be deployed and
hosted using Google
App Engine, Amazon

EC2, Apache/PHP
Dockerfile, …

Figure 1. Middleware components of WordPress and deployment alternatives

there is a constraint: Juju charms can only be deployed on
Ubuntu-based VMs.

To go one step further and provide elastic middleware for
WordPress to scale in and out dynamically and automatically
depending on the current workload, solutions such as database-
as-a-service and runtime-as-a-service [11] offerings can be used
instead of maintaining VMs. For instance, Amazon Elastic
Beanstalk15 and Google App Engine16 provide PHP runtime
environments transparently as a service without seeing or
maintaining the underlying infrastructure such as VMs. Amazon
Relational Database Service (RDS)17 may be used as MySQL
database-as-a-service to satisfy the MySQL requirement of
WordPress. One downside of this elastic middleware-as-a-
service approach is its limited configurability. For instance,
a MySQL database hosted on a VM can be arbitrarily tuned
and configured, whereas a database instance offered as a service
only provides predefined configuration options18.

Therefore, even for an application with a few deployment
and operations requirements such as WordPress, there exists a
great variety of alternatives. Because of the individual benefits
and drawbacks of each alternative, it becomes difficult for
application designers to decide on how to easily and efficiently
deploy their application. Thus, the major challenge we tackle
with our work is how to systematically capture, link, and
utilize DevOps knowledge as a foundation for informed decision
making during application design and deployment. For this
purpose, a methodology and system to collaboratively maintain
and use the captured knowledge is required because different
parties such as developers and operations personnel may be
involved. The following section presents a holistic approach
toward this goal.

III. DEVOPS KNOWLEDGE MANAGEMENT METHODOLOGY

When developing and operating applications such as
WordPress, a large variety of alternatives exist in choosing
appropriate infrastructure and middleware solutions to fulfill
DevOps requirements. Figure 2 outlines our proposal for a
holistic DevOps knowledge management approach with the
goal to provide the means to systematically resolve DevOps
requirements. More specifically, DevOps knowledge is currently
spread across different sources in the form of unstructured and
semi-structured data. Public repositories, for instance, provide
semi-structured data in the form of reusable artifacts such as
scripts, templates, and images (e.g., preconfigured VM images)
to operate middleware and application components. Prominent

15Amazon Elastic Beanstalk: http://aws.amazon.com/elasticbeanstalk
16Google App Engine: https://cloud.google.com/products/app-engine
17Amazon Relational Database Service (RDS): http://aws.amazon.com/rds
18Creating a MySQL DB instance on Amazon RDS: http://goo.gl/JwA5Gr

Chef
Cookbook
Repository

Docker
Image

Repository
…

DevOps Knowledgebase

Linked services, tools, and
artifacts on different levels:

Infrastructure, middleware,

application

Experts

Crowd

Crawlers

Semi-structured data:
Scripts, templates, …

Unstructured data:
Services, tools, … capture and link

knowledge

query

Developers &
Operations

define

Web Shop
Application

develop &
operate

May be distributed and composed
of different knowledge stores

(public, private, community, …)

ad-hoc browsing
and/or

refine knowledge
(rate, link, …)

discover
and/or rate

discover

DevOps
Requirements

Heroku, Google App
Engine, Chef Server,

fog, jclouds, …

Figure 2. Holistic DevOps knowledge management (overview)

examples are the Chef cookbook repository19, Puppet Forge20,
Docker Hub21, and Amazon Web Services’ Marketplace22.
Crawlers can be used to discover such artifacts in an automated
manner because the artifacts are annotated with meta data such
as dependencies, categories, and input/output data specifications.
Ratings associated with these artifacts may be discovered by
the crawlers, too.

Discovering unstructured data in a fully automated manner
is much more challenging because natural language processing
techniques such as document classification [12] need to be
utilized. These approaches do not always lead to correct results,
so the resulting knowledgebase may become inconsistent
quickly. Thus, additional sources of input can be used to
discover and rate DevOps knowledge. For instance, experts
are able to analyze the documentation and sources of DevOps
tools (Chef [6], Puppet [8], etc.) to operate middleware and
application components, libraries (fog23, jclouds24, etc.) to
manage Cloud resources, and services (Heroku25, Google
App Engine, etc.) to utilize middleware-as-a-service offerings.
However, discovery performed by humans is not limited
to experts. Crowdsourcing approaches [13] may be used
alternatively or in a complementary fashion. As an example,
the growing open-source community centered around DevOps
tools and artifacts such as Chef, Puppet, Juju, and Docker
may follow such an approach to systematically consolidate
DevOps knowledge. The knowledge discovered by crawlers,
experts, and crowdsourcing efforts can then be captured, linked,
and optionally refined in a DevOps Knowledgebase (KB) in a
collaborative manner. This DevOps KB covers different levels
of resources such as provisioning libraries on the level of
infrastructure, deployment scripts on the level of middleware,
and templates on the level of application stacks. As shown in
Figure 3, the knowledge discovery and capturing is meant to
be continuously repeated to refine and update the DevOps KB.

As shown in Figure 2 and Figure 3, developers and oper-
ations personnel define DevOps requirements for a particular

19Chef cookbooks: http://supermarket.chef.io/cookbooks
20Puppet Forge: https://forge.puppetlabs.com
21Docker Hub: https://registry.hub.docker.com
22Amazon Web Services’ Marketplace: https://aws.amazon.com/marketplace
23fog: http://fog.io
24jclouds: http://jclouds.apache.org
25Heroku: https://www.heroku.com

Discover
unstructured

DevOps
knowledge

Discover
semi-structured

DevOps
knowledge Capture, refine,

and link
knowledge in

knowledgebase

Optional:
Rate

discovered
knowledge

Define and refine
DevOps

requirements for
application

Deploy, operate,
and monitor
application

Browse, query, and refine
knowledgebase to

resolve DevOps
requirements

DevOps
Knowledgebase

Figure 3. Methodology to manage and use DevOps knowledge

application (e.g., WordPress requires MySQL and PHP, as
discussed in Section II). These requirements can be used to
query against the DevOps KB to find viable options to resolve
the requirements. Alternatively, the KB may be browsed, for
instance, to get an impression what options are available to
host a MySQL database. Then, the DevOps requirements of a
particular application may be refined accordingly. Moreover,
the knowledgebase can be updated, e.g., by adding deployment
scripts for new middleware components required by an appli-
cation. All these tasks are performed to eventually resolve the
DevOps requirements of an application in order to deploy and
operate it. By end-to-end monitoring the application, occurring
issues on different levels can be identified. For example, if there
are problems with a certain middleware component, its DevOps
requirements may have to be refined and adapted. As such,
the proposed approach promotes the continuous and iterative
accumulation, organization, and utilization of knowledge over
the lifetime of applications.

IV. DEVOPS KNOWLEDGEBASE

In the previous section we proposed a methodology to
enable holistic DevOps knowledge management. The DevOps
KB is the central component to implement a collaborative
knowledge management system. Collaboration based on the KB
is not limited to the efficient collaboration between developers
and operations personnel. It further includes the collaborative
discovery and capturing of DevOps knowledge by experts,
crawlers, and crowdsourcing. In this section we focus on the
conceptual structure of the DevOps KB to enable collaborative
DevOps knowledge management as discussed in the previous
section. Technically, the DevOps KB may be composed of
multiple, possibly distributed knowledge stores. For instance,
there could be public knowledge stores that are maintained
by open-source communities. These stores may be focused
on artifacts of certain kinds such as Chef cookbooks and
Docker images. Private knowledge stores may be maintained
by companies or departments for knowledge that is either very
specific and/or is not meant to be available outside the scope of
one organization. Consequently, the actual KB is a composition
of multiple public and/or private knowledge stores.

A. Knowledge Classification

In order to classify existing DevOps tools, artifacts, and
services in a systematic way, we propose a set of base
taxonomies to categorize abstract entities and implementations.

Middleware

Runtime Database

Graph-
based Relational

Messaging

Java PHP

…

… …

MySQL

MySQL on
RDS

LAMP AMI

…

Web
Server

PHP App.
Cookbook

LAMP Charm

LAMP
Dockerfile

MySQL
Cookbook

MySQL
Dockerfile

PHP on Google
App Engine

PHP on Elastic
Beanstalk

MySQL
Charm

… …

… LAMP Cloud-
Form. Tpl.

Apache/PHP
Dockerfile

Abstract Entity Implementation

Apache
HTTP Server

Figure 4. Middleware taxonomy

More specifically, knowledge is organized around middleware,
infrastructure, providers, and DevOps automation tooling.
Figure 4 presents an extract of our middleware taxonomy
classifying different kinds of middleware such as runtimes, Web
servers, and databases. These are captured as abstract entities,
whereas implementations such as PHP application cookbook,
LAMP Dockerfile, and MySQL charm can be instantiated
to resolve specific DevOps requirements. This middleware
taxonomy is based on the middleware categorizations of Cloud
providers and DevOps tooling providers such as Heroku26,
Google27, IBM Bluemix28, and Chef29.

In addition, an infrastructure taxonomy providing cate-
gorized infrastructure implementations is required to define
dependencies for middleware implementations that are not
offered as a service. For instance, the MySQL cookbook
middleware implementation requires an operating system such
as Ubuntu or Amazon Linux to be hosted on, whereas MySQL
on RDS can be used as a service provided by Amazon RDS
without having to resolve further infrastructure requirements.
Middleware implementations may not only require infrastruc-
ture implementations. Additional tooling may be required by
middleware implementations such as operations tools (e.g.
Chef, Docker, Juju, etc.). Moreover, tooling to build, test,
and integrate middleware and application components may
be part of the DevOps requirements for a particular application.
All these supporting tools covering both development and
operations, as well as integration aspects are categorized using
an additional DevOpsware taxonomy.

Some middleware implementations are offered as a service
by certain providers such as MySQL on RDS. An additional
provider taxonomy to classify provider implementations such
as RDS offered by Amazon. These provider implementations
are linked to the service implementations in the middleware
taxonomy to define, for instance, that MySQL on RDS is hosted
on RDS. To capture such relations between implementations
(hosted on, requires, etc.) and further characteristics in the

26Heroku add-ons: https://addons.heroku.com
27App Engine features: https://developers.google.com/appengine/features
28IBM Bluemix services: http://bluemix.net
29Chef cookbooks: http://supermarket.chef.io/cookbooks

Implementation Properties

PHP Application
Cookbook

REQUIRES

HOSTED_ON

= DevOpsware / Operations / Chef AND
 Middleware / Web Server / Apache Cookbook AND …
= Infrastructure / OS / Linux / Ubuntu XOR
 Infrastructure / OS / Linux / RHEL XOR …

PHP on Google
App Engine

HOSTED_ON
ELASTIC

= Provider / Google / App Engine
= TRUE

Apache/PHP
Dockerfile

REQUIRES
HOSTED_ON

= DevOpsware / Operations / Docker
= Infrastructure / OS / Linux / Ubuntu XOR …

MySQL on RDS HOSTED_ON
SCALING

= Provider / Amazon / RDS
= MASTER-SLAVE

MySQL
Cookbook

REQUIRES
HOSTED_ON

= DevOpsware / Operations / Chef AND …
= Infrastructure / OS / Linux / Ubuntu XOR …

MySQL Charm REQUIRES
HOSTED_ON
SCALING

= DevOpsware / Operations / Juju
= Infrastructure / OS / Linux / Ubuntu
= MASTER-SLAVE

LAMP AMI HOSTED_ON = Provider / Amazon / EC2

LAMP Cloud-
Formation Tpl.

REQUIRES
HOSTED_ON

= Provider / Amazon / CloudFormation
= Provider / Amazon / EC2 AND Provider / Amazon / RDS

Ubuntu Server
14.04 64-bit AMI

HOSTED_ON = Provider / Amazon / EC2

OpsWorks REPLACES
INT_WITH

= DevOpsware / Operations / Chef
= Provider / Amazon / EC2 AND Provider / Amazon / RDS

…

Figure 5. Properties of implementations

knowledgebase, properties are added as annotations to im-
plementations. In the following we present an initial set of
properties to annotate implementations:

• HOSTED ON refers to one or more entities, either
infrastructure or provider entities, on which this imple-
mentation can be hosted on. For instance, the MySQL
cookbook may be hosted on Ubuntu, Amazon Linux, or
Red Hat Enterprise Linux (RHEL).

• REQUIRES refers to one or more entities, most likely
DevOpsware entities, that are needed to operate this
implementation. For instance, the MySQL cookook
requires Chef.

• REPLACES refers to one or more entities that can be
replaced by this entity. For instance, Amazon OpsWorks
can be used to replace a Chef server.

• INT WITH refers to one or more entities that are inte-
grated with this entity. For instance, Amazon OpsWorks
is integrated with Amazon RDS.

• VERSIONS defines one or more tuples to express
which versions of this implementation are supported.
For instance, a MySQL implementation supporting two
versions: (‘MySQL’, ‘5.5’), (‘MySQL’, ‘5.1’).

• SCALING defines the scaling mode (e.g., cluster, master-
slave, etc.) of this implementation if scaling is supported
at all.

• ELASTIC defines whether this implementation is elastic,
meaning if it scales automatically and dynamically
depending on the current load.

Figure 5 provides examples of properties for several
implementations of different types. For instance, two of the
four listed MySQL implementations support scaling in a master-
slave manner, meaning additional slave instances can be added

…

DevOps
Knowledge-

base

Chef
Cookbook
Repository

Juju
Charm

Repository

Experts

Crawler Semi-structured data

Unstructured data
capture and link

knowledge

discover

discover

Google App Engine

Amazon Web Services

Amazon
Knowledge

Store

Google
Knowledge

Store

Chef
Knowledge

Store

Juju
Knowledge

Store

build and render consolidated
knowledgebase

Knowledgebase
Builder

Knowledgebase
Renderer

Figure 6. Overview of prototype implementation

as replicas to load-balance read requests between them; the
other two do not support scaling. Considering implementations
of a PHP runtime, some of them are elastic, whereas others
do not have any scaling capabilities. Furthermore, some
implementations are bound to certain providers such as PHP
on Google App Engine or LAMP AMI; others only have to be
hosted on certain operating systems that may run on arbitrary
VMs at any provider or even on-premise. Additional properties
may be defined to further characterize implementations. As an
example, runtime-as-a-service offerings such as PHP on Google
App Engine do not always provide unlimited filesystem access.
Moreover, files stored in the filesystem may not be persistent.
Such information can be captured using properties because
application components may rely on corresponding features
depending on their architecture and design.

B. DevOps KB Prototype Implementation

An overview of our prototype implementation of a DevOps
KB is presented in Figure 6, following the methodology
proposed in Section III and the classification discussed in
the previous. More specifically, we have discovered and
systematically captured unstructured data from documentations
and feature descriptions of Google App Engine and Amazon
Web Services in corresponding knowledge stores. Currently,
each knowledge store is represented as a single YAML30 file
stored in a Git repository. Based on the provider taxonomy
discussed in the previous Section IV-A, we captured infras-
tructure and middleware implementations offered by these
two providers. We then categorized these implementations
based on the infrastructure and middleware taxonomies outlined
before. Furthermore, we implemented a crawling framework
to automatically discover semi-structured data such as reusable
scripts and configuration definitions such as Chef cookbooks
from public repositories. Corresponding knowledge stores are
automatically generated by the crawler as shown in Figure 6.

In order to eventually build and render a consolidated,
interlinked DevOps knowledgebase we implemented a knowl-
edgebase builder as a Node.js31 module to merge individual
knowledge stores. This is done by reading the contents of
all knowledge stores and merging it into a hierarchically
structured database. The technical foundation could be a single
file rendered in JSON, XML, or YAML as it is implemented

30YAML Ain’t Markup Language: http://www.yaml.org
31Node.js: http://nodejs.org

in our first prototype. But it could also be based on a database
server such as a graph-based database server32 or a relational
database server to use and implement more efficient query
mechanisms. The resulting DevOps KB currently holds roughly
4000 implementations, including 1430 Chef cookbooks, 2190
Puppet modules, and 278 Juju charms captured as middleware
implementations by the crawling framework; the rest are
additional implementations of types infrastructure, provider,
and middleware derived from provider offerings as well as
DevOpsware implementations. Finally, we implemented a
knowledgebase renderer as a Node.js module to render the
knowledgebase in different formats such as JSON, YAML,
and XML. This eases the usage of the knowledgebase in very
different contexts. Both the knowledgebase builder and the
renderer can be used programmatically and through a command
line interface.

V. DEVOPS KNOWLEDGE UTILIZATION

In order to logically specify DevOps requirements for
an application such as WordPress as outlined in Section II,
predicates can be defined and combined in the form of Boolean
expressions. These expressions can then be utilized as queries
against the DevOps KB. Let’s assume E is the domain of
all entities captured in the taxonomies that are part of our
DevOps KB. The predicate Prequires : E → {true, false}
then assigns each entity (abstract entity or implementation) a
Boolean value. The Prequires predicate returns true if the
given entity is an implementation or there is at least one
implementation that inherits from the given entity; otherwise it
returns false. In addition to E , let’s assume P is the domain
of all properties and V is the domain of all property values;
the predicate PpropertyEq : E × P × V → {true, false}
then assigns each combination of an entity, a property, and
a property value a Boolean value. The PpropertyEq predicate
returns true if the given entity owns the given property with
the given value (in the DevOps KB), or there is at least one
entity with the given property and value that inherits from
the given entity; otherwise it returns false. The predicate
PpropertyEqGr : E ×P ×V → {true, false} is very similar to
PpropertyEq but it also returns true if the actual property value
is greater than the given value. For instance, this predicate
can be used to express version dependencies in the sense of
a particular version or greater is required. The predicates
PpropertyEq and PpropertyEqGr implicitly cover the Prequires

predicate because if a certain property of an entity needs to
be equal to or greater than a given value, the entity itself is
obviously required. As an example, we could use the expression
Prequires(‘Middleware/DB/.../MySQL’) to specify the need for
a MySQL database in our application stack. In case we require
specific versions, we can go with a refined expression such as
PpropertyEqGr(‘Middleware/DB/.../MySQL’, ‘versions’, ‘5.0’).

Beside expressing application-specific DevOps requirements
an organization may enforce further constraints that are valid
independent of a specific application. Such constraints, as shown
by the following examples, can be expressed as additional
requirements: (i) MySQL has to be hosted on an Ubuntu VM;
(ii) operating any component on Amazon is forbidden; (iii)
using Chef for deployment is forbidden.

32Neo4j graph database: http://www.neo4j.org

Additional predicates may have to be defined to cover such
requirements. For instance, we have to define the predicate
Pexcludes : E → {true, false} to express that we do not allow
Amazon to be involved in any application stack that we operate:
Pexcludes(‘Provider/Amazon’). Such expressions can be merged
with application-specific requirements as outlined before, to
get a consolidated Boolean expression to be used as a query
against the DevOps KB. We use the standardized Web Services
Policy Framework (WS-Policy) [14] to render expressions
as policies and merge such expressions. Finally, merged
expressions can be transformed to WS-Policy normal form
(basically a disjunctive normal form) to ease the processing of
corresponding expressions and their usage for query purposes.
As an example for the WordPress application discussed in
Section II we can express its minimum requirements as:
WordPressminimum =

PpropertyEqGr(‘Middleware/DB/.../MySQL’, ‘versions’, ‘5.0’) ∧

PpropertyEqGr(‘Middleware/Runtime/PHP’, ‘versions’, ‘5.2.4’) ∧

Prequires(‘Middleware/Web Server’)

The WordPressminimum expression can then be evaluated
against the DevOps KB to see whether there are appropriate im-
plementations to operate WordPress. Moreover, the expression is
used to derive possibly multiple alternatives and combinations to
operate the application based on the implementations captured
in the knowledgebase. A few examples drawn from the
prototype implementation discussed in Section IV-B are:

1) LAMP AMI (middleware) hosted on Amazon EC2 (provider).
2) LAMP charm (middleware) hosted on Ubuntu (infrastructure) hosted

on Amazon EC2 (provider).
3) PHP application cookbook (middleware) hosted on Ubuntu (in-

frastructure) hosted on Amazon EC2 (provider) & MySQL charm
(middleware) hosted on Ubuntu (infrastructure) hosted on Amazon
EC2 (provider).

4) PHP on Elastic Beanstalk (middleware) hosted on Amazon Elastic
Beanstalk (provider) & MySQL on RDS (middleware) hosted on
Amazon RDS (provider).

5) PHP on Google App Engine (middleware) hosted on Google App
Engine (provider) & MySQL charm (middleware) hosted on Ubuntu
(infrastructure) hosted on Amazon EC2 (provider).

These are just several selected examples how the WordPress
application can be deployed and operated. The requirements
can be refined to limit the alternatives by additional constraints,
e.g., by requiring a scalable MySQL implementation:
WordPressscalableDB =

PpropertyEqGr(‘Middleware/DB/.../MySQL’, ‘versions’, ‘5.0’) ∧

(PpropertyEq(‘Middleware/.../MySQL’, ‘scaling’, ‘master-slave’) ⊕

PpropertyEq(‘Middleware/.../MySQL’, ‘scaling’, ‘cluster’)) ∧ ...

Similarly, expressions can be further refined by adding
constraints such as PpropertyEq(‘Middleware/Runtime/PHP’,

‘elastic’, true) and Pexcludes(‘Provider/Amazon’). These ex-
pressions are then rendered, merged, and normalized using
WS-Policy to be used as queries against the DevOps KB.

VI. CONCLUSION

The DevOps paradigm is rising in prominence in contem-
porary information systems as the means for efficient, seamless
end-to-end automated software management. The combination
of DevOps approaches with Cloud computing solutions enables

the rapid provisioning of infrastructure resources on demand.
An ever expanding wealth of existing reusable DevOps artifacts
and related Cloud services means that application designers
and developers have ample opportunities for putting tried and
tested DevOps knowledge into practice. However, deciding how
to use this knowledge is hindered by the multitude of existing
approaches, the scattering of knowledge between different
communities and experts, and the width of the available
design space in application design. In order to address the
need for informed decision making, in the previous sections
we presented our proposal for a holistic DevOps knowledge
management methodology. More specifically, we identified
a set of knowledge sources that can be (publicly) accessed,
and the means to harvest the knowledge that is contained
in these sources. This can be done in an automated manner
based on our crawling approach. Finally, we discussed how
to reflect, organize, store, and utilize the knowledge using a
DevOps knowledgebase, predicate logic, and WS-Policy. Future
work includes the improvement of the knowledge management
approach by populating the DevOps KB with more offerings
from Cloud providers, the evaluation of crawling techniques
for the automatic capturing of such offerings, e.g., based on the
providers’ API documentations, and finally, we aim to enable
the automated generation of alternative application topologies
based on our previous research [15].

ACKNOWLEDGMENT

This work is partially funded by the FP7 EU-FET project
600792 ALLOW Ensembles.

REFERENCES

[1] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 2010.

[2] J. Humble and J. Molesky, “Why Enterprises Must Adopt Devops to
Enable Continuous Delivery,” Cutter IT Journal, vol. 24, 2011.

[3] M. Walls, Building a DevOps Culture. O’Reilly Media, Inc., 2013.
[4] J. Wettinger, U. Breitenbücher, and F. Leymann, “DevOpSlang - Bridging

the Gap Between Development and Operations,” in Proceedings of the
3rd European Conference on Service-Oriented and Cloud Computing
(ESOCC), 2014.

[5] M. Hüttermann, DevOps for Developers. Apress, 2012.
[6] S. Nelson-Smith, Test-Driven Infrastructure with Chef. O’Reilly Media,

Inc., 2013.
[7] S. Günther, M. Haupt, and M. Splieth, “Utilizing Internal Domain-

Specific Languages for Deployment and Maintenance of IT Infrastruc-
tures,” Very Large Business Applications Lab Magdeburg, Fakultät für
Informatik, Otto-von-Guericke-Universität Magdeburg, Tech. Rep., 2010.

[8] J. Turnbull and J. McCune, Pro Puppet. Apress, 2011.
[9] T. Uphill, Mastering Puppet. Packt Publishing Ltd, 2014.

[10] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
National Institute of Standards and Technology, 2011.

[11] S. Kächele, F. J. Hauck, C. Spann, and J. Domaschka, “Beyond IaaS
and PaaS: An Extended Cloud Taxonomy for Computation, Storage and
Networking,” 2013.

[12] P. Trinkle, “An Introduction to Unsupervised Document Classification,”
2009.

[13] S. Dustdar and K. Bhattacharya, “The Social Compute Unit,” Internet
Computing, IEEE, vol. 15, no. 3, pp. 64–69, 2011.

[14] W3C, “Web Services Policy Framework (WS-Policy), Version 1.5,” 2007.
[15] V. Andrikopoulos, S. G. Sáez, F. Leymann, and J. Wettinger, “Optimal

Distribution of Applications in the Cloud,” in Proceedings of the 26th
Conference on Advanced Information Systems Engineering (CAiSE), ser.
LNCS. Springer, 2014, pp. 75–90.

